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SUMMARY

Random-walk models are a versatile tool for modelling dispersion of both passive and active tracers in
turbulent �ow. The physical and mathematical foundations of stochastic Lagrangian models of turbulent
di�usion have become more and more solid over the years. An important aspect of these types of
models that has not received much attention is the behaviour of the particles near boundaries. Often,
a simple stochastic, numerical scheme is used. Because turbulent mixing in the vertical direction is
much more complicated than in the two horizontal directions, it is in the vertical direction that a simple
numerical scheme, such as the Euler scheme, may cause problems.
In this paper our main goal is the development of an e�cient 3D particle transport model that can

be used in strati�ed �ow. For this type of situation the vertical direction is of special interest. First, a
closer look is taken at some considerations that should be regarded when choosing a numerical scheme.
Speci�cally schemes are investigated that can be used in the vertical direction, where the di�usion
coe�cient is varying in that direction. Experiments are performed regarding the accuracy of di�erent
numerical schemes in various situations. The behaviour of the particles near an impermeable layer
interface is investigated. The stochastic Heun and Runge–Kutta schemes turn out to be very attractive
for this type of model.
For the simulation of the transport of various physical quantities, such as salinity, heat, silt, oxygen, or

bacteria, di�erent types of models are available. In this case we will take a closer look at the modelling
of the transport of pollutants from point sources (either instantaneous or continuous transport). For
this purpose a 3D particle transport model has been developed that is especially suited for strati�ed
situations such as can be found in estuaries. The main idea is to use a simple numerical scheme for the
horizontal directions and a higher-order method for the vertical direction. The results play an important
role in making speci�c choices for this type of particle transport model. Copyright ? 2005 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The behaviour of particles in turbulence has been studied for many years, i.e. in
meteorology References [1–5], and hydrology [6–9]. Much research has been carried out
to calculate the Lagrangian trajectories of these particles, ranging anywhere from highly ide-
alized �ow to situations as complex as the unstable convective boundary layer. The level of
understanding in these types of models has greatly increased over the years. The behaviour
of the ensemble average concentration of a passive tracer is quite well understood, and the
amount of knowledge about concentration �uctuations from two-particle (or more) models has
grown as well [1, 10–12]. But, however advanced these models are, limited attention is paid
to the numerical part. Since these models are all part of the family of stochastic di�erential
equations, and cannot be solved exactly due to their complexity and nonlinearity, they all
require (in some form or another) a stochastic numerical scheme to simulate them.
There are basically two ways to look at the movement of a group of particles. The Eulerian

way describes what happens at a �xed point (or region) in space. This allows the observation
of phenomena at a speci�c location, and results in a deterministic advection–di�usion type
partial di�erential equation (PDE). The Lagrangian method follows the particles through space
at every time step, and allows the observation of �uctuations in the path of the particles.
The Lagrangian approach results in a stochastic di�erential equation (SDE), describing the
behaviour of the particles. The latter one is used many times in this article. Some basic
properties, characteristics and background information of this approach are brie�y discussed
below.
In many cases, the Lagrangian alternative to a Eulerian partial di�erential equation is avail-

able. By interpreting the concentration C(t; x) of particles as the probability P(t; x) that a
particle ends up at location x at time t (released at x0 at time t0), we can write the 1D
advection–di�usion equation as

@P
@t
+ u

@P
@x
= D

(
@2P
@x2

)
(1)

P(t0; x) = �0(x − x0) (2)

where D is the di�usion coe�cient, u represents a velocity, and �0 stands for the Dirac delta.
This last equation is an example of a so-called Fokker–Planck equation (see Reference [13]).
In more general terms, this equation describes the propagation of the transition probability
density function (PDF) P = P(t; x; t0; x0) = P(Xt = x|Xt0 = x0) of the stochastic process Xt
according to

@P
@t
=− @

@x
(f(t; x)P) +

1
2
@2

@x2
(g2(t; x)P)

lim
t ↓ t0
P(t; x; t0; x0) = �(x − x0)

(3)

We see that the Fokker–Planck equation is an advection–di�usion type di�erential equation
that describes the evolution of the conditional probability density function. It is known that the
Lagrangian model that corresponds to Equation (3) is the following Itô stochastic di�erential

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:331–350



EFFICIENT 3D PARTICLE TRANSPORT MODEL 333

equation (SDE):

dXt =f(t; Xt) dt + g(t; Xt) d�t

X0 = x0
(4)

where f and g are arbitrary functions and d�t stands for an incremental Brownian motion
process. The solution of the Fokker–Planck equation is the conditional probability density
function associated with the solution, Xt , of the stochastic di�erential equation (4). Note
that the SDE (4) must be interpreted in the Itô sense if it is to be consistent with the
Fokker–Planck equation (3). The partial di�erential equation (3) is completely consistent
with the Lagrangian description of Equation (4). It gives a complete description of variations
in time and space of the PDF. Details can be found in Reference [14], or Reference [5], for
example.
As mentioned before, in order to solve these SDEs, we need to resort to numerical methods.

Note that the term ‘numerical method’ in this and subsequent cases refers to the stochastic
version of these schemes. For ease of use and simplicity the most favourable of these schemes
is the Euler scheme. It is cheap, it is simple to implement, and it can give reasonable results.
One of the major drawbacks of the Euler scheme, however, is that it has very poor con-

vergence behaviour [15]. This implicitly means that in order to get accurate results, a small
time step is required, and therefore many calculations. Another drawback of the Euler method
is that it has unwanted behaviour in the neighbourhood of boundaries. Because the scheme is
so inaccurate, a time step that is too large will result in particles that unintentionally cross a
boundary.
In a hydrodynamical model for example, this could mean that particles end up on land, pass

through the water surface, or disappear into the bottom. This sort of behaviour is undesired,
and should be kept to a minimum. Of course, when a particle moves across a boundary, we
could simply move it back to its old position and draw a new random number. That, however,
would change the nature of the model, because we would favour a certain direction that the
particle should take over others. Instead, what is sometimes done, is that the time step is
halved, and a new random number is drawn. The original time step is split in two, letting the
particle travel two short time steps instead of a single big one. This process is repeated until
the particle does not pass the boundary anymore. The result is that the particle bends along
a certain boundary (see Figure 1), but never crosses it. Physically speaking, this means that
the di�usion coe�cient approaches zero the closer one gets to a closed boundary.
Consequently, this means that near boundaries, detailed calculations are done to keep all

particles inside the model. If this needs to be done for many particles, the number of compu-
tations near boundaries might increase drastically. The situation sketched above occurs near
physical boundaries, but for a vertical dispersion model in strati�ed �ow this problem becomes
also visible in other ways. They can have di�erent layers, each with its own characteristics
(salinity, density, temperature). When particles are released in one layer, they are not allowed
to cross to another layer. The problem in such a case is similar to the one described above,
but more subtle because there is no solid boundary, only an ‘imaginary’ one.
Luckily, a wide variety of stochastic schemes other than the Euler scheme is available,

varying from fairly simple to extremely complex, that may improve the above-mentioned
disadvantages of the Euler scheme. In the next section we will focus on various numerical
approximations to SDEs, and look speci�cally at numerical schemes that can be used instead
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Figure 1. Example of the movement of a particle that bends along the coast.

of the Euler scheme in order to make more accurate, and more e�cient computations. Later
in this article (see Section 3), results from the next section will be taken into consideration in
the development of a numerical scheme in the vertical direction of the 3D particle transport
model.

2. BOUNDARY TREATMENT IN PARTICLE MODELS

In this paper we speci�cally focus on the behaviour of particles near (solid) boundaries.
To this end we have investigated a variety of numerical methods for SDEs. These can roughly
be categorized as follows:

• Explicit schemes, contained in this category are for example the one-step Euler or
Milstein scheme, a predictor–corrector method such as Heun, or a multi-step method
such as the Runge–Kutta scheme.

• Implicit schemes, such as the implicit Euler, and implicit Milstein schemes.
• Semi-implicit schemes, that lie somewhere in between the explicit and fully implicit
methods. The trapezoidal scheme, for example, belongs to this category.

• Extrapolation methods make use of lower order methods such as the Euler or
Milstein schemes to obtain a higher order approximation. An example of such a method
is Richardson extrapolation.

• Stochastic Taylor expansions.
The Euler and Milstein scheme are both members of this last category as well. The develop-

ment of higher-order schemes based on Taylor expansion require more and more information
about the derivatives and are not discussed further. The di�erences between various numeri-
cal methods become clearer with the following example. It is inspired by the application in
Section 1 of this paper. Results from the example are the motivation for the actual numerical
scheme that was implemented in the 3D particle transport model, which will be discussed
later in this paper (Section 3).
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Let us take a closer look at a simpli�ed situation. Consider the di�usion equation in a one-
dimensional channel with in�nite depth, but with spatial variations in the di�usion coe�cient

@C
@t
=
@
@x
D(x)

@C
@x

C(t0; x) = �0(x − 1)
(5)

where C(t; x) is the concentration, D(x) the di�usion coe�cient, t stands for time, x for
position, and �0 the Dirac delta. There is an SDE that reveals the same behaviour for the
particles as this equation. The PDF, P(t; x), of the particles describes the density of particles at
a certain location, which is just the concentration C(t; x) of the particles. With the connection
through the PDF we therefore have consistency with the following random-walk model:

dXt
Itô=
dD
dx

dt +
√
2D d�t (6)

Xt0 = 1 (7)

Notice the advective term in the particle model, even though this term is not (directly)
present in the di�usion equation. The term is sometimes called the correction term for spatial
variations in di�usion. In order to get a more speci�c SDE, we can choose a di�erent di�usion
coe�cient, for instance one equal to D(Xt) = X 2t (Xt¿0):

dXt
Itô= 2Xt dt +

√
2Xt d�t (8)

By choosing the initial position equal to Xt0 = 1, we see that the exact solution starts positive,
and remains so

Xt =et+
√
2�t (9)

As long as the initial condition is positive, the entire solution process is positive as well.
Note that when Xt → 0, the di�usion will go to zero as well. We can see the line Xt =0
as an impermeable layer that the particles should not cross. When simulating sample paths
from the exact solution (9), we can see that it is impossible for a particle to cross the
layer. Simulating trajectories numerically, on the other hand, can lead to problems. Due to an
unfavourable realization of the random numbers, in combination with a time step that is too
large, a particle may cross the boundary.
Of course this behaviour is unwanted, especially in a three-dimensional particle model,

where this may not only occur at the bottom (or surface) of the �ow, but also in the middle
of strati�ed �ow, or in the neighbourhood of the physical boundaries of the model. A solution
that is sometimes used to solve this was described in Section 1. When a particle crosses the
boundary, it is moved back to its old position. Drawing a new random number would mean
that we change the nature of the PDF, because we reject a certain choice for the random
numbers. Instead, the time step is halved, and a new random number is drawn. This process
is repeated, so that the particle bends along the boundary (see Figure 1), but never crosses it.
Since the size of the time step often becomes small if particles are near boundaries, the

amount of computations increases. It would be advantageous in such cases to minimize the
number of particles that crosses the boundaries in the �rst place. The use of a higher-order
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Figure 2. (a) An example of a single particle track in a one-dimensional channel with
an impermeable layer located at x=0. The spatially varying di�usion coe�cient is
equal to D(Xt)=X 2t . The exact solution is generated using 212 time steps, while both
the Euler and Milstein schemes use only 27 time steps. (b) The same example, only

with the Heun and Runge–Kutta schemes. The SDE was �rst transformed.

numerical scheme may perhaps not completely prevent this from happening, but it will at
least reduce the number of times that it does happen.
To illustrate the e�ect of the numerical scheme, we approximate the solution of Equation (8)

with several numerical schemes. The simplest scheme is the explicit Euler scheme

Yn+1 = Yn + 2Yn�t +
√
2Yn��n

Y0 = 1
(10)

where �t is the discrete time step for the numerical calculation, and ��n is the Brownian
motion increment associated with this time step. In order to generate numerical solutions
we divide the interval [0; 1] in 212 steps, and calculate a sample Brownian motion process
for these �ne time steps (dt). We use those to calculate an ‘exact’ solution with the aid of
Equation (9), which will be our reference solution. On a computer it is of course impossible
to generate an exact solution, since this is only obtained for dt ↓ 0. We use the same set
of random numbers to calculate the corresponding random increments that are needed on the
coarser time steps (�t = 2−7) in the numerical scheme (10). This means that in the numerical
schemes there are 25 of the small time steps dt between each evaluation at the coarser time
steps �t (212=27 =25).
Some examples of possible realizations in the one-dimensional channel are shown in

Figures 2 and 3. For clarity, results for only a single particle are plotted. In each approx-
imation, as well as in the exact solution, the same set of random numbers is used. The
results from the schemes are quite far apart, ranging from extremely poor (implicit Euler)
to surprisingly good (Runge–Kutta). Notice how the particle using the implicit Euler scheme
crosses the layer, while the one using the implicit Milstein scheme does not. The version of
the trapezoidal scheme (a semi-implicit scheme with a 50–50% weighting factor between the
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(a) (b)

Figure 3. (a) An example of a single particle track in a one-dimensional channel with an imperme-
able layer located at x = 0. The spatially varying di�usion coe�cient is equal to D(Xt)=X 2t . The
exact solution has been generated using 212 time steps, while both the implicit Euler and Milstein
schemes use only 27 time steps. (b) The same example, only with the Richardson extrapolation

and a semi-implicit trapezoidal scheme (�=0:5).

explicit and fully implicit schemes) that was used, produces results somewhere in the middle
of the results for the explicit and implicit Euler schemes. Of the schemes that are based on
the Euler scheme, the Richardson scheme is the only one that performs signi�cantly better
than the Euler scheme itself.
Before using the Heun and Runge–Kutta scheme, we must �rst transform the SDE from

Itô to Stratonovich (see for example Reference [16]). Otherwise the solutions that these two
numerical schemes produce will not be the ones that we are interested in. The transformed
SDE looks as follows:

dXt
Strat= Xt dt +

√
2Xt d�t (11)

Xt0 = 1 (12)

This test case is a rather extreme situation: the numerical schemes try to approximate the
solution on a very coarse grid, namely once every 27 =128 time steps. What it shows, is that
the numerical scheme has a considerable impact on the movement of a particle.
It is clear that any improvement over the Euler scheme is welcome, because it is the

only scheme (explicit, implicit, or a combination) where the particle actually crosses the
boundary. The other schemes are bound to give more accurate results, faster convergence,
and better behaviour near boundaries. Especially the Runge–Kutta scheme looks promising
for this speci�c case. The results will improve when using smaller time steps, although the
crossing of particles across the invisible boundary may never be avoided completely, due to
unfavourable increments.
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Figure 4. The area of interest is the band of shallow water in front of the Dutch coast.

3. A 3D PARTICLE MODEL FOR THE DUTCH COASTAL ZONE

The coastal zone of The Netherlands is very sensitive to disturbances in its ecosystem. There-
fore, it is important to be able to take protective action in case of pollutant calamities. Think
for example of a ship, or a factory leaking chemicals. The resulting transport of pollutants to
a certain area may result in damage to, or even the extinction of marine life. A prediction
model for such a situation would be a big help in determining what measures should be taken.
Especially the Wadden Sea is an area in The Netherlands with a delicate balance between
di�erent ecological systems. The geographical area of the Dutch coastal zone is made up of
a complex whole of rivers, estuaries, and tidal inlets that is connected to a shallow sea. The
model area is a band perpendicular to the coast with a width of approximately 80 km. A
picture of the area is shown in Figure 4. The depth of that part of the North Sea is generally
not more than 45m. Because of the many fresh-water rivers discharging into the North Sea,
and the number of estuaries that are the result of this, these areas are of speci�c interest.
These estuaries are generally semi-enclosed bodies of water, connected to the sea, within

which sea water is measurably diluted by fresh water. Interaction of two chemically and physi-
cally di�erent water masses gives rise to complex sedimentological and biological processes
and patterns. The most fundamental characteristic of an estuary is the interaction between
salt and fresh water. This leads to a common classi�cation by salinity structure relating
to the degree of separation or mixing of the two water masses. Three di�erent mixing regimes
are identi�ed: strati�ed, partially mixed and well-mixed or homogeneous. In this section we
are primarily interested in the strati�ed case, where the fresh and salt water masses remain
distinct. Typically, when a fresh water river discharges into a saline sea, a salt wedge is
formed at the interface where the two bodies of water meet (see Figure 5).
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Figure 5. An example of a ‘static’ salt wedge in an estuary, where �1 is the density of
fresh water and �2 is the density of salt water, � is the tension along the wedge.

The more dense sea water meets the river water and intrudes along the bottom under the
fresh water. The length of the intruding wedge is determined by the resulting equilibrium
between on the one hand, the friction along the interface, and on the other hand, the pres-
sure gradient resulting from the inclination of the interface. When this equilibrium is well
established, the salt wedge will be in a stable position with the fresh water �owing seaward
on the surface and spreading out in a thin surface layer at sea. A pollutant that is released
in either one of those layers is likely to stay within that particular layer. Of course there
will be transport at molecular level across the interface, but the bulk of the pollutant will
stay in the original layer. Particle models should re�ect this behaviour as well, unfortunately
with a rudimentary numerical scheme such as the Euler scheme this is quite cumbersome and
requires a very small time step.
A model based on a Lagrangian viewpoint was developed, i.e. the pollutant is followed

through a certain region in space. The model that was used in this application is a three-
dimensional, stochastic, particle transport model based on the advection–di�usion equation,
by the name of SIMPAR (see References [17, 18]). Originally, the model used to be a
2DH random-walk model (i.e. depth averaged), developed by the Dutch National Institute for
Marine and Coastal Management, the RIKZ. The model only included horizontal movement
of the particles, but it was consistent with a depth-averaged advection–di�usion equation. The
movement of the particles occurred in two steps: a drift term based mainly on advection,
and a di�usion term, modelled as the stochastic component. Recently, the vertically averaged
version was extended to include particle movement in all three directions. To investigate the
behaviour of the particle movement in strati�ed �ow, we take a closer look at the vertical
direction.
A higher-order method was implemented speci�cally for the movement in the vertical

direction to model the above-mentioned behaviour in estuaries more accurately. Especially
in three-dimensional models, where the nature of the turbulent mixing in the vertical direction
is much more important than that in the horizontal direction, the simplicity of the numerical
scheme in vertical direction may cause problems.
The three-dimensional, incompressible shallow �ow model TRIWAQ, also made available

by the RIKZ, generates the �ow data that is used as input by the stochastic transport model
(for more details on the TRIWAQ model you are referred to Reference [19]). The TRIWAQ
model calculates time-independent quantities such as the water depth in the model, as well
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as time-dependent quantities such as velocities, and water levels. The model also contains a
k–� turbulence model that yields eddy viscosities. Other elements that are included are for
example bottom friction, wind, and a transport model to calculate the salinity conditions. The
model grid for these calculations is curvilinear and has more grid cells in areas of speci�c
interest, usually near the coast. The results from these calculations are then used as prior
knowledge for the Lagrangian particle transport model.

3.1. The model equations

The SIMPAR model is based on the following set of equations:

@C
@t
+
@
@x
(uC) +

@
@y
(vC) +

@
@z
(wC)

=
@
@x

(
DH
@C
@x

)
+
@
@y

(
DH
@C
@y

)
+
@
@z

(
DV
@C
@z

)
(13)

with initial condition
C(t0; x; y; z)= �0(x0 − x)�0(y0 − y)�0(z0 − z) (14)

where
C = constituent concentration (kg=m3)

u= layer-averaged velocity �eld in x-direction (m=s)

v= layer-averaged velocity �eld in y-direction (m=s)

w= layer-averaged velocity �eld in z-direction (m=s)

x= x-position (m)

y= y-position (m)

z= z-position (m)

DH = horizontal di�usion coe�cient (m2=s)

DV = vertical di�usion coe�cient (m2=s)

(15)

Since the probability P that a particle arrives at location (x; y; z) at time t is equal to
the concentration in that point, we may substitute P(t; x; y; z)=C(t; x; y; z). The corresponding
Fokker–Planck equation is then found to be

@P
@t
=− @

@x

[(
u+

@DH
@x

)
P

]
− @
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@DH
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)
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− @
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]

+
1
2
@2

@x2
(2DHP) +

1
2
@2

@y2
(2DHP) +

1
2
@2

@z2
(2DVP) (16)

P(t0; x; y; z) = �0(x0 − x)�0(y0 − y)�0(z0 − z) (17)
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A large number of books, and articles has been written on the connection between random-
walk models and the Fokker–Planck equation, and for more detailed information we refer to
for example References [3, 5, 11, 13, 15].
The set of stochastic di�erential equations governing the motion of particles in three

dimensions looks as follows (in a simpli�ed notation):

d Xt
Itô=f1(t; Xt ; Yt ; Zt) dt +G11(t; Xt ; Yt ; Zt) d�1; t (18)

dYt
Itô=f2(t; Xt ; Yt ; Zt) dt +G22(t; Xt ; Yt ; Zt) d�2; t (19)

dZt
Itô=f3(t; Xt ; Yt ; Zt) dt +G33(t; Xt ; Yt ; Zt) d�3; t (20)

Xt0 = x0; Yt0 =y0; Zt0 = z0 (21)

where dt stands for the time step. The terms in the (3× 1) drift vector f=(f1; f2; f3) and
the (3× 3) di�usion matrix G can be found from the Fokker–Planck equation (see (17))

f1 = u+
@DH
@x
; f2 = v+

@DH
@y

; f3 =w +
@DV
@z

(22)

G11 = G22 =
√
2DH (23)

G33 =
√
2DV (24)

The (3× 1) vector
d�t =(d�1; t ; d�2; t ; d�3; t)T (25)

consists of Brownian motion increments. The increments are Gaussian distributed, stochasti-
cally independent with zero mean and variance dt

E{d�j(t)} = 0 (26)

E{d�i(t) d�j(s)} = �ij�(t − s)
√
dt ds (27)

Because the grid on which the necessary �ow information is generated is curved, a trans-
formation is required to convert the transport equations from a rectangular coordinate system
to a curvilinear one. The curvilinear transformation is only used in the horizontal direction.
The vertical direction is not a�ected by this. The details of this transformation will not be
discussed here, and for the resulting equations you are referred to References [19, 20]. The
following transformation is introduced:

x = x(�; �) (28)

y = y(�; �) (29)
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where (x; y) are the coordinates in the Cartesian, or physical plane, and (�; �) the ones in the
curvilinear plane. The base vectors in the (�; �) plane are given by

e� =
(

1√g��
@x
@�
;
1√g��
@y
@�

)
(30)

e� =
(

1√g��
@x
@�
;
1√g��
@y
@�

)
(31)

with the Jacobian
√
g∗ of the orthogonal horizontal transformation given by√

g∗ =
√
g��
√
g�� (32)

g�� =
(
@x
@�

)2
+

(
@y
@�

)2
(33)

g�� =
(
@x
@�

)2
+

(
@y
@�

)2
(34)

Because the transformation is orthogonal, we also have that

e� · e�=0 ←→
@x
@�
@y
@�
+
@x
@�
@y
@�
=0 (35)

It is customary to introduce a 	-transformation for the vertical direction in a 3D model
(see for example References [19, 21, 22])

	 =
z − 
(x; y; t)
H (x; y; t)

or (36)

z = 	H (x(�; �); y(�; �); t) + 
(x(�; �); y(�; �); t) (37)

with 	 ∈ [0; 1], 
 stands for the water level, and z stands for the depth, and H is the total
water depth. For the notation we use a tilde above the drift vector and di�usion matrix to
indicate that these are now transformed. Furthermore, a subscript � or � is used to indicate
that a variable is taken in either � or � direction (u� and u�). Letters that are underlined
indicate vectors.
In case of an orthogonal transformation in the horizontal and a 	-transformation in the

vertical direction, the transformed drift consists now of three di�erent parts

f̃=(f̃)A + (f̃)D + (f̃)C (38)

where (f̃)A stands for the drift due to advection

(f̃1)A =
1√g�� u�; (f̃2)A =

1√g�� u�; (f̃3)A =
1
H
! (39)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:331–350



EFFICIENT 3D PARTICLE TRANSPORT MODEL 343

(f̃)D stands for the drift due to di�usion

(f̃1)D =
1
g��
@DH
@�
− 1
Hg��

@z
@�
@DH
@	

(40)

(f̃2)D =
1
g��
@DH
@�
− 1
Hg��

@z
@�
@DH
@	

(41)

(f̃3)D =
1
H 2

@DV
@	

+
1
H 2

[
1
g��

(
@z
@�

)2
+
1
g��

(
@z
@�

)2] @DH
@	

− 1
H

[
1
g��
@z
@�
@DH
@�

+
1
g��
@z
@�
@DH
@�

]
(42)

and (f̃)C stands for the drift due to curvature of the grid

(f̃1)C =
DH
g��

[
1√g��
@√g��
@�

− 1√g��
@√g��
@�

]
(43)

(f̃2)C =
DH
g��

[
1√g��
@√g��
@�

− 1√g��
@√g��
@�

]
(44)

(f̃3)C =
1
H 2

1√g��
@z
@�

[
DH√g��

@H
@�
−H√g��(f̃1)C

]

+
1
H 2

1√g��
@z
@�

[
DH√g��

@H
@�
−H√g��(f̃2)C

]

−DH
[
1
g��

@
@�

(
1
H
@z
@�

)
+
1
g��

@
@�

(
1
H
@z
@�

)]
(45)

The expressions for the drift due to di�usion are greatly simpli�ed if the di�usion is assumed
to be constant in the horizontal direction

(f̃1)D = 0 (46)

(f̃2)D = 0 (47)

(f̃3)D =
1
H 2

@DV
@	

(48)

The other parts of the drift vector f do not change. Of course when the di�usion in the
vertical direction is assumed to be constant as well, the entire drift due to di�usion (f̃)D is
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no longer present. For the transformation of the di�usion part of the equation we �nd

(G̃11)=

√
2DH
g��

; (G̃22)=

√
2DH
g��

; (G̃33)=
1
H

√
2DV (49)

Particle movement in the third dimension does not necessarily have to be calculated using
the 	-transformation. To simplify things, it was decided not to use the 	-transformation in
SIMPAR 3D. Calculations are done in absolute positions. This simpli�es the curvature and
di�usion terms in the vertical direction even more

(f̃3)A =w; (f̃3)C =0; (f̃3)D =
@DV
@z
; (G̃33)=

√
2DV (50)

because all derivatives of z to � and � are now zero (z= z(x; y) and not z= z(�; �)). Note that
this also means that the velocities in the vertical direction are no longer the vertical velocities
related to the sigma-coordinates, but the real, physical velocities in that direction.
The development of a true three-dimensional higher-order numerical scheme would of

course be ideal. One of the drawbacks of higher-order numerical methods in large models
is usually that a lot more work needs to be done by the computer. Especially in three-
dimensional models the e�ect of higher-order methods on the overall amount of calculation
time is problematic. Because the horizontal directions are of less interest, it was decided that
the motions of the particles in those directions are su�ciently modelled by a simple Euler
scheme. Since the movement of the particles is independent in every direction, it is possible
to split the movement of the particle in a horizontal and a vertical component. This in turn
provides the possibility to use two di�erent numerical schemes: one for each direction. For
the particle movement in the vertical direction, the Euler scheme was therefore replaced by
the more accurate Milstein or the stochastic Runge–Kutta numerical scheme. This resulted in
a more e�cient computation than a fully three-dimensional model, that still has the bene�ts
of a higher-order scheme in the direction that we are most interested in.
Because of our interest in a higher-order scheme in vertical direction, it is necessary to

transform the original Itô SDE into a Stratonovich one. An additional term in the drift, (f̃3)S,
is required (only for the SDE in vertical direction)

f̃3 = (f̃3)A + (f̃3)D + (f̃3)C + (f̃3)S (51)

where

(f̃3)S = +
1
2
G33

@
@z
(G33) (52)

=+
1
2

√
2DV

@
@z
(
√
2DV)

=+
√
DV

@
@z
(
√
DV)

=+
1
2
@DV
@z

(53)
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Boundary conditions are available from the TRIWAQ model. The particles are not allowed
to pass through the solid boundary of the coast and the bottom. In the case that this does
happen, the method of halving the time step, as explained in the beginning of this paper
(Section 1), is applied. It is slightly di�erent when encountering some form of strati�cation,
for example when salt water slides under fresh water from a river. The particles are not
supposed to pass freely from one layer to another, because of the di�erent densities in the
di�erent layers. Physically speaking, there will of course be exchange of particles from the
fresh-water layer and the salt-water layer. However, since the bulk of the particles does not
mix, similar behaviour should be expected from the particle model. If a particle moves outside
the area of interest it is removed from the calculation.

3.2. An experiment in a simulated estuary

Because of the complexity of the model and the many factors that have impact on the calcula-
tion, it was decided to simulate the above-mentioned situation in estuaries in a more controlled
environment (more details can also be found in Reference [23]). A simple geometry was used
to test the e�ects of di�erent numerical schemes. The objective was to create an example of
a strati�ed situation where it is possible to identify the areas of di�erent density, simply by
looking at the pro�le of the vertical di�usion distribution. Obviously, the di�usion should be
equal to zero, both near the surface and the bottom. Furthermore, the di�usion around the
interface between fresh and salt water should be close to zero as well. Consider a rectangular
channel, 60 km in length, 5 km in width, and 10m in depth. Two physical layers are simulated
to create a strati�ed system. The left side of the model contains a velocity boundary condition,
while the right side of the model has a water level boundary. The top layer �ows from left
to right, with a velocity v1 = 0:6m=s and a density �1 = 1020 kg=m3. The bottom layer �ows
from left to right as well, but with a velocity v2 = 0:3m=s, and a density �2 = 1036 kg=m3.
This means that the fresh water on top slides across the salt water at the bottom. Depending
on the amount of turbulence that is internally generated by the model, these two layers will
either stay strati�ed, or become completely mixed.
In the vertical direction, 20 layers were used in the �ow calculations of the shallow-

water �nite-di�erence model. This number was chosen to obtain enough detail in the vertical
direction, especially near the interface between the fresh and salt water. Due to bottom friction
enough turbulent energy is generated to obtain a parabolic di�usion pro�le in vertical direction
in the bottom layer. A comparable parabolic di�usion pro�le is generated in the top layer by
adjusting the e�ects of the wind (Figure 6).
Since the salt water is heavier than the fresh water, it requires a certain amount of energy

before the two layers will mix. Enough turbulent energy needs to be generated before the
salt water is ‘lifted’ across the interface to cause mixing. Too small an amount of friction
or wind will cause the di�usion to stay uniformly distributed across a layer (�ow stays strat-
i�ed) instead of generating the desired parabolic pro�le (see Figure 5). Next, particles are
released near the beginning of the channel, at a depth of 7:5m. Since we are speci�cally
interested in the behaviour of the particles in vertical direction, the results for the horizon-
tal propagation of the particles are not included here. A vertical cross section is shown in
Figure 7 for two of the tested numerical schemes. The �gures show the results for 100
particles in the case of the Euler scheme and the stochastic version of the Runge–Kutta
scheme.
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Figure 6. The vertical di�usion pro�le in a rectangular channel.
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Figure 7. The release of 100 particles in strati�ed �ow in a channel. A vertical cross section
of the channel is shown. On the left side a numerical simulation with the Euler scheme,
and on the right side the same simulation with the higher order stochastic Runge–Kutta

scheme. The simulation time was equal to 36 h, with a time step of one hour.

Besides the fact that the choice of the numerical scheme in the vertical direction a�ects
the particle behaviour in that direction, it also a�ects the particle behaviour in the horizontal
direction. Because the top layer moves at twice the speed of the bottom layer, particles
that arrive in this layer are transported much faster than they should. As is obvious from
Figure 7, this introduces a large amount of arti�cial horizontal dispersion. In fact, in this
speci�c scenario, the horizontal size of the cloud is nearly two times larger when the Euler
scheme is used than that from the Runge–Kutta scheme.
The time step of one hour in these simulations was chosen based on the horizontal scales.

The transport is based on the advection–di�usion equation, indicating that the large-scale
motions in the �ow are of interest. The di�usion coe�cient in the coastal zone is O(102)m2=s,
the time step is equal to 1 h. A typical di�usion step in horizontal direction would be a random
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number drawn from a standard normal distribution multiplied by a factor
√
2Ddt, which would

be around 850m. The di�usion coe�cient in the vertical direction is O(10−6)m2=s, but due
to the e�ects of shear this results in a turbulent di�usion coe�cient in the order of 10−3 m2=s.
This means that the random increments in the vertical direction with this time step are around
2:6m. Since the depth of the channel is only 10m, and the height of the two physical layers
is roughly half of that, it is very likely that a particle will cross the interface between the two
layers. This type of model contains two di�erent time scales: one for the horizontal plane,
where time steps of one hour give no problems, and another for the vertical direction where
a time step of one hour does give problems.

3.3. A real-life 3D particle simulation in the Dutch coastal zone

After the promising results of the test case scenario, some more real-life simulations were
performed, this time in a not so controlled environment: the Dutch coastal zone. The
hydrographical situation of this area was calculated on a grid of 127 × 368 points. A
realistic bottom pro�le was used.
A group of particles was released in the southernly part of the North Sea, approximately

30 km from the coast. These particles were then tracked for the next 4 days. Because the
residual �ow (to the North) is very small, a lengthy simulation would be required. In order
to avoid this a heavy wind (a constant 10m=s) coming from the Southwest was introduced in
the simulations, which basically prevented the particles from moving South again due to the
tide. That way, the particles move along most of the Dutch coastal area in just a few days of
simulation. In Figure 8 some details of two speci�c particles can be found. Both the horizontal
and the vertical paths are shown. It should be noted that the vertical scale looks rather rough,
but this is exaggerated due to scaling. The particles actually travel well over 200 km, while
the bottom topography varies between about 10 and 20m in depth. The particles move across
the entire depth because there is no strati�cation. The pictures of the bottom topography show
some interesting physical properties: clearly the gully extending from the Nieuwe Waterweg
into sea can be distinguished (t = 9). Another interesting feature is the sand bank in front
the isle of Texel, where one of the two particles moves to after approximately 77 h.
For completeness a sample of the mean particle displacement for the 4-day simulation is

shown in Figure 9. Also included is an indication of the size of the cloud. From these �gures
it is clear that due to the di�erences in the treatment of numerical procedures, the variations
in horizontal transport are minimal.
A simulation with the newly implemented Runge–Kutta scheme takes approximately three

times longer than a simulation with the Euler scheme. In the past the results of the model
have been compared to the results from the Eulerian transport model TRIWAQ. The TRIWAQ
model has been used to generate the velocity �elds. Since both models are based on the same
(advection–di�usion) equation, the results are comparable. It falls outside the scope of this
paper to give a full comparison between the Lagrangian and the Eulerian approach.

4. CONCLUSIONS

In the �rst part of the article various stochastic numerical schemes have been compared to �nd
the best suitable scheme in the main problem of interest: a fully three-dimensional particle
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Figure 8. A sample of the path of two particles in the Dutch coastal zone. On the left two
particles are followed in time and a cross section in the vertical direction is shown. On the
right-hand side the horizontal movement of the same two particles is shown. The numbers
in the right-hand side picture are the hours that have passed since the initial release. These

times correspond to the times in the �gures on the left-hand side.

transport model for use in strati�ed �ow. Speci�c examples with a spatially varying di�usion
coe�cient have been investigated. Each experiment was performed by a number of di�erent,
easy-to-use numerical schemes: Euler, Milstein, Richardson, Heun, and Runge–Kutta, and
various implicit ones. Some of these schemes are known to produce the Itô solution of a
SDE (Euler, Milstein, and Richardson), while others produce the Stratonovich solution (Heun
and Runge–Kutta). These last two schemes therefore involve a transformation so that they
yield the desired Itô solution.
Even though some of these schemes only require a minor additional e�ort compared with

the Euler scheme, the changes in terms of much more accurate results and faster convergence
are rewarding. Multiple-step schemes such as the Heun, or Runge–Kutta scheme give good
results. The set of experiments that was carried out is an indication that any improvement
over the Euler scheme is welcome. Even though this is not trivial, and some care needs to
be taken in the choice and application of the scheme, such a scheme does not necessarily
need to be complicated or expensive. As advanced as the current Lagrangian particle transport
models for dispersion in turbulent �ow sometimes are, it is surprising to see how many of
these models still use the Euler scheme, while minor adaptations may greatly improve the
model’s accuracy.
In the second part of the article more realistic scenarios were studied. At �rst a simpli�ed

case was evaluated: a rectangular channel in which strati�cation occurs. The simple geometry
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Figure 9. The mean displacement of a cloud of particles. On the left are the results with
the Euler scheme, on the right the same results with the Runge–Kutta scheme. An example
of the size of the cloud is shown after 3 days of simulation. The size of the short axis of
the ellipse is given by Sx and the long axis by Sy (both in meters). The size of the ellipse
is chosen such that 95% of all particles are within its circumference. Variations in patch
size are minimal: less than 300m in both directions after 3 days. Variation in the mean

displacement is in the same order of magnitude: about 400m after 3 days.

was chosen in order to be able to closely observe the vertical movement of the particles in
a somewhat controllable environment. Several numerical schemes were implemented (Euler,
Milstein, and Runge–Kutta) to see how each of these schemes would cope with the strati�ed
conditions in the channel. Results from this scenario revealed that the choice of the numerical
scheme has quite an impact on the overall result. Not only are the results in the vertical
direction di�erent, but the choice for the numerical scheme also a�ects the distribution of
the particles in the horizontal direction. In the particular experiment described above (see
Section 3.2), the size of the particle cloud in horizontal direction ended up being almost
twice as large under certain conditions.
After the simple geometry, the method was applied to a more complicated geometry of the

Dutch coastal zone. Unless a speci�c zone with strati�ed �ow is included in the simulation,
the results for di�erent numerical schemes were similar (for the mean). Note that because of
the large di�erences in scales between the horizontal and vertical directions, the choice of the
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size of the time step has important implications. A time step that is suitable for horizontal
movement might not be the most appropriate one for vertical movement and vice versa.
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